

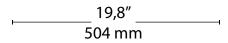
Technical data

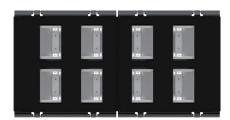
rev. 2024.02

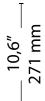
INSTALL: Indoor

ACCESSIBILITY

OPTICAL TECHNOLOGY


Timeless

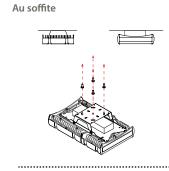

Tool-free openable fixture. Replaceable internal components without the need of tools.



Reflexa

Système optique réfléchissant composé de LED monopuce, réflecteur en aluminium extra-pur avec traitement argent PDV et verre trempé extra clair.

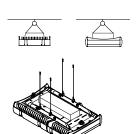
Échelle: 1:20

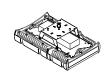

Poids maximum

HI4: 8 Kg

Œillet

Latérale: 0,04 m² |Plan: 0,14 m²

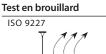

TYPE DE FIXATION



Câbles en acier

Infographie liée à la famille Hibra et non au produit unique

STANDARD


EN 60598-1, EN 60598-2-3, EN 62471, EN 55015, EN 61547, EN 61000-3-2, EN 61000-3-3

CERTIFICATIONS | PROTECTION

Conformité

Classes d'isolation

Classes de protection

PLUS

CARACTERISTIQUES DU LUMINAIRE

Caractéristiques générales

Tension: 220-240V | 50/60Hz | tolerance +/-10%

354 mA | 525 mA | 700 mA | 850 mA Courant: $(P_{max} = 320W)$

Facteur de pouissance | THD: ≥0.95 | <10 % (à pleine)

Durée de vie estimée (Ta = 25°): 100.000 h | L90B10 | @ LED 700mA

Température de service (Ta): T_{min}= -40°C $T_{max} = +55^{\circ}C | 199,5W$ +50°C |305W

-40°C/+80°C Température de stockage:

Protection contre les surtensidmenunité aux surtensions jusqu'à 10 kV

Fonction de série: Courant fixe |Minuit virtuel|CLO

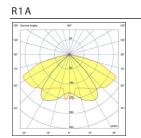
Matériel

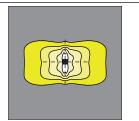
Luminaire:	Fonte d'aluminium EN1706	
Groupe optique:	Réflecteur en aluminium avec traitement PVD argent,	
	pureté 99,7% oxydé et poli.	
Écran:	Verre ultra-clair trempé ép. 4 mm	
Plaque de fixation:	Acier galvanisé S235	
Joint:	Silicone amovible	
Presse étoupe:	Polyamide PA66 PG16 Ø 14mm MAXI IP66	
Boulonnerie:	Acier inoxydable AISI 306	
Couleur du luminaire:	RAL 9005	

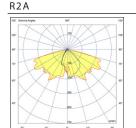
SPÉCIFICATIONS LED

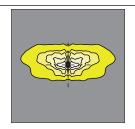
LED data 4.000 K - 700mA: 340 lm/LED | 180 lm/W | 25°C [Tj] | \leq 3 step MacAdam 3.000 K | 4.000 K | 5.700 K| CRI ≥ 70 Color temperature:

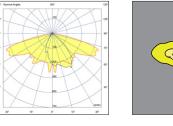
OPTIONAL

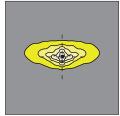

OT HOMME	
Protection supplémentaire	SPD avec LED de signalisation CLASSE 1 CLASSE 2 12
avec dispositif SPD:	kV/kA
Accessoires électriques:	Câble d'alimentation 0,5m avec connecteur à 2-3 ou 4-5 broches
Fonction sur demande:	DALI-DALI3

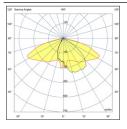

Systèmes optiques

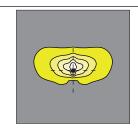

rev. 2024.02

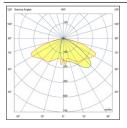

OPTIQUES SYMÉTRIQUES

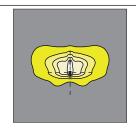


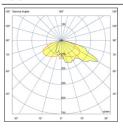

OPTIQUES ASYMÉTRIQUES

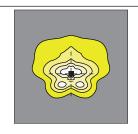


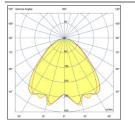

R2B

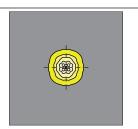


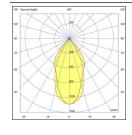

R3A

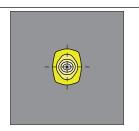


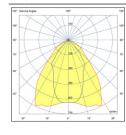

R3B

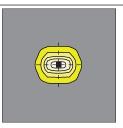



R3C




OPTIQUES DE PROJECTION




R9B

R10A

Données photométriques | Données nominales source LED

rev. 2024.02

The LED modules nominal data refers only to the LED light sources in a standard version, with 4000 K color temperature, color rendering index CRI 70 min. and a junction temperature tj of 25°C. The LED nominal data are extrapolated from the manufacturer documentations.

Code LED		(•) I [mA]	Flux lumineux [lm]	Puissance LED [W]	Efficiency [lm/W]
		350	16180	82,4	196
RF21	<u> </u>	525	22517	125,6	179
		700	28274	169,9	166
		850	32772	255,0	128
		350	18491	94,2	196
DE2.4		525	25734	143,5	179
RF24		750	34110	208,2	164

Données photométriques | Données mesurées source LED

rev. 2024.02

Les données photométriques mesurées se réfèrent aux luminaires GMR ENLIGHTS en version standard, c'est-à-dire avec une température de couleur de 4000 K, une optique de type R3A et une température ambiante ta égale à 25°C.

GMR ENLIGHTS offre la possibilité de piloter le luminaire avec des courants personnalisés (•).

La disponibilité des fonctions est soumise aux configurations. Pour obtenir les flux lumineux et les efficacités du luminaire en cas de typologie optique et/ou de température de couleur et/ou d'indice de rendu des couleurs différents de la norme, utiliser les facteurs de conversion indiqués dans les tableaux. En cas de présence de verre en option, certains codes pour la commande peuvent être différents de ceux indiqués dans le tableau. Dans ce cas, les valeurs de flux lumineux et d'efficacité seront différentes de celles indiquées.

		(•) I [mA]	Flux lumineux [lm]	Puissance LED [W]	Efficiency [lm/W]
		350	15205	91,5	166
RF21	-	525	21160	139,5	152
	= - = =	700	26571	189,0	141
		850	30917	230,0	138
RF24		350	17377	104,5	166
		525	24183	159,5	152
		750	32180	232,5	138
	4				

FACTEUR DE CONVERSION DU FLUX LUMINEUX EN FONCTION DE L'OPTIQUE

Type d'optique	Multiplicateur flux
R2A	0,99
R2B	0,98
R3B R3C	1,00
R9A	1,00
R9B	0,98
R10A	0,99

FACTEUR DE CONVERSION DU FLUX LUMINEUX EN FONCTION DU Tk

Tk [K]	Multiplicateur flux
3.000	0,94
5.700	1,01

FACTEUR DE CONVERSION DU FLUX LUMINEUX EN FONCTION DU CRI

CRI (rendu des cou- leurs)	Multiplicateur flux
70	1,00
80	0,93

(*) Vérifiez la disponibilité de l'optique à la page : Systèmes optiques disponibles (**) Vérifiez la disponibilité de la température de couleur à la page : Données techniques

Fonction

Fonction de série

Courant fixe

Le corps d'éclairage est préréglé en usine avec un courant d'entraînement fixe parmi ceux standard indiqués dans les tableaux à la page 3. Il est possible de régler d'autres courants sur demande du client (personnalisé).

Minuit virtuel | Gradation automatique du flux lumineux

Le conducteur est programmé pour atténuer automatiquement la puissance lumineuse en fonction de l'heure. Comme le prévoit la réglementation, l'émission maximale est concentrée dans les premières et dernières heures du corps d'éclairage, statistiquement les plus chargées, puis décroît dans les heures centrales de la période d'éclairage. Le réglage s'effectue par un processus d'auto-apprentissage de l'appareil, qui détermine le point médian entre l'instant d'allumage et d'extinction. Cet instant, appelé « minuit virtuel », constitue le point de référence pour appliquer la réduction d'émission lumineuse selon le profil souhaité. Nous pouvons gérer jusqu'à 8 heures de programmation autour de minuit virtuel et jusqu'à 5 étapes de gradation. Le réglage de l'émission lumineuse est alors mis à jour automatiquement, en s'adaptant à la durée de la nuit tout au long de l'année et en prenant toujours comme référence les paramètres prédéfinis relatifs au point central entre l'allumage et l'extinction.

CLO | Compensation du flux lumineu:

Les LED sont soumises à un processus de dégradation des performances dû à l'utilisation. La diminution des performances peut être compensée par une augmentation progressive du courant d'entraînement pendant toute la durée de vie définie, obtenant ainsi une augmentation progressive du flux lumineux de sortie qui compense proportionnellement celui naturellement dégradé.

Fonctionnalité sur demande

DALI2 | Système de contrôle et de surveillance

Sur demande, le corps d'éclairage peut être équipé d'une interface de communication DALI2. Ce protocole prévoit la possibilité de contrôler et de surveiller le corps d'éclairage via le bus de contrôle dali.

D4i

Sur demande, le corps d'éclairage peut être équipé d'une alimentation certifiée D4i. Cette solution est idéale lorsque des capteurs et/ou des commandes sans fil sont nécessaires. Le système a été créé pour l'intégration du système et dans le sens des villes intelligentes. Le protocole DALI2 + l'alimentation auxiliaire AUX pour l'alimentation des appareils et des capteurs sont fournis. Ce système est généralement requis en conjonction avec la prise Zhaga Lumawise.

COMMUTATEUR DE LIGNE

Cette fonctionnalité, grâce à un fil conducteur supplémentaire sur la ligne d'alimentation de l'éclairage public, permet de faire varier l'intensité du système à un niveau défini. Grâce par exemple à une minuterie centralisée il est possible de changer l'état de 100% à par exemple 50%, et inversement.

Cette fonction permet la gradation d'une ligne d'éclairage public à travers la même ligne d'alimentation pilotée par un régulateur de flux en amont. Pour cette fonctionnalité

Le régulateur de débit doit fonctionner en modulation d'amplitude.

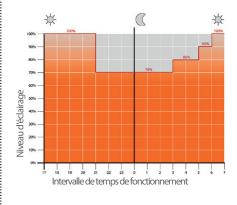
NEMA | Prise Nema (7 broches)

La prise Nema est un connecteur/prise IP66 à 7 broches, qui est monté sur le corps de l'éclairage pour le rendre interfaçable avec les appareils et télécommandes compatibles NEMA, ANSI C136.41. Ces dispositifs peuvent être installés en même temps ou ultérieurement après l'installation du corps d'éclairage. La prise NEMA prévoit la possibilité d'une coupure de courant, et l'interfaçage avec le bus DALI et/ou 1-10V. Compatible avec des appareils tels que "nœuds point à point sans fil" ou "capteurs crépusculaires" et autres.

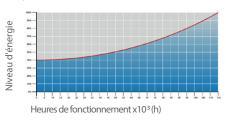
ZHAGA | Prise Lumawise Zhaga (4 broches)

Le Lumawise Zhaga Socket 4 PlN est un connecteur / prise à 4 broches, IP66, petit et compact, qui correspond le mieux au design des luminaires GMR ENLIGHTS. La prédisposition avec prise ZHAGA lumawise vous permet d'installer des appareils ZHAGA, des capteurs, des télécommandes à la fois en même temps que l'installation et à un stade ultérieur. Cette prise est généralement requise en conjonction avec la fonctionnalité DALI SENSOR, qui fournit le protocole de communication DALI2 / D4i ainsi qu'une alimentation auxiliaire de 12 / 24V pour alimenter les capteurs. Compatible avec les solutions de contrôle point à point sans fil et les applications SMART CITIES, pour le contrôle et la surveillance des infrastructures d'éclairage public.

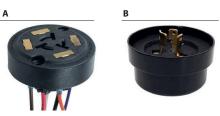
CAPTEUR DE PRÉSENCE

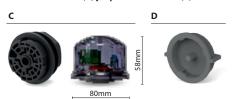

Le produit peut être équipé d'un capteur de présence type zhaga book 18 en partie basse du luminaire. Dans ce cas, le corps d'éclairage est fourni avec une prise Zhaga et un Driver D4I. Il est très important d'évaluer soigneusement le contexte d'installation (hauteur et zone sous-jacente) selon le schéma de détection de l'appareil.

TÉLÉCOMMANDES TIERCES SUR LE MARCHÉ

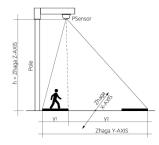

Les luminaires GMR ENLIGHTS sont compatibles avec la plupart des télécommandes tierces, systèmes à ondes véhiculées, systèmes filaires (bus), systèmes sans fil.

rev. 2024.02


Ejemplo de regulación de 4 pasos con medianoche virtual


CLO | Compensación del ujo luminoso

Nema 7 broches 7 (A) et capuchon de court-circuit IP66 (B)


Nema Socket 7 PIN (A) y tapón de cierre IP66 (B)

EJEMPLO DE APLICACIÓN DE LUMAWISE ZHAGA

EJEMPLO DE APLICACIÓN DE CAPTEUR DE PRÉSENCE

GMR ENLIGHTS

Cycles de protection

rev. 2024.02

GMR ENLIGHTS travaille avec la fonte, l'acier et l'aluminium. Les matériaux sont sélectionnés et traités pour maximiser les performances et la qualité.

Protection des surfaces en acier galvanisé pour les mâts

La protection des éléments en acier galvanisé est obtenue par les étapes suivantes :

- Micro-sablage;
- Application d'un apprêt époxy avec des phases successives de : Évaporation > Séchage > Refroidissement ;
- Application d'une laque acrylique avec des phases successives de : Évaporation > Séchage > Refroidissement;
- Emballage après au moins 24 heures de séchage à température ambiante.

Protection des surfaces en acier galvanisé pour les consoles et crosses

La protection des éléments en acier galvanisé est obtenue par les étapes suivantes :

- Micro-sablage;
- Décapage phosphorique à un pH compris entre 1,5 et 3;
- Rinçage à l'eau déminéralisée ;
- Application d'un apprêt époxy;
- · Cuisson au four :
- · Application de la couche finale époxy;
- Cuisson au four de la couche finale époxy à 180°;
- Refroidissement.

Protections des surfaces en fonte pour les socles

La protection des éléments en acier galvanisé est obtenue par les traitements suivants :

- Micro-grenaillage de surface ;
- Galvanisation par immersion avec un enduit de zinc monocomposant, avec des phases successives de:
- Évaporation > Séchage > Refroidissement;
- Application d'un primaire epoxy micacé avec des phases successives de:
- Évaporation > Séchage > Refroidissement;
- Application d'une laque acrylique avec des phases successives de : Évaporation > Séchage > Refroidissement ;
- Emballage après au moins 24 heures de séchage à température ambiante.

Protections des surfaces en fonte d'aluminium pour les luminaires, pointes, colliers, consoles et pastorales

Les luminaires, consoles, pastorales et accessoires moulés sous pression sont soumis à un cycle de peinture époxy, qui assure la protection des pièces métalliques contre la corrosion et rend l'aspect du produit fini conforme aux spécifications de conception, en termes de rugosité de surface, de couleur et de réflectance. Le cycle est structuré selon les étapes décrites ci-après :

- Micro-sablage;
- Décapage à chaud dans une solution d'acide phosphorique dégraissante à base de zinc;
- Procédé spécifique pour la préparation des surfaces avant peinture ;
- · Lavage à l'eau;
- Rinçage à l'eau déminéralisée et séchage ultérieur ;
- Application d'un apprêt époxy et cuisson ultérieure de l'apprêt dans un four à 180°;
- Application d'une couche de finition époxy avec un produit Haute Durabilité et cuisson finale dans un four à 180°.

Test en brouillard salin

La haute qualité de ces traitements est confirmée par un test en brouillard salin, réalisé conformément à la norme ISO 9227:2017 Test de brouillard salin neutre (NSS). Le test a été effectué pendant 8000 heures à 35°C et a été prouvé par le rapport d'essai publié.

GMR ENLIGHTS s.r.l

Siège social Strada Provinciale Specchia - Alessano, 68 • 73040 (LE)

> Siège administratif et Via Grande n°226 • 47032 Bertinoro (FC)

> > T +39 0543 462611 F +39 0543 449111

sales@gmrenlights.com www.gmrenlights.com